
On Linux systems, numerous users often come across a program or process

that locks up. The user will usually kill the software if the system does

not do it first. Users may be familiar with some of the kill commands and

signals, but does anyone understand all of them? There are four common

kill commands and a total of 64 kill signals.

kill - The kill command will kill a process using the kill signal and PID

given by the user. To use the SIGKILL signal with "kill", type one of the

following for a process with a PID of 0710.

kill -9 0710

kill -SIGKILL 0710

The kill command accepts either the signal number or name (signals have

both a number and name that can be referenced). The name must be in all

caps.

killall - The killall command kills all process with a particular name.

For instance, Nautilus may be running several times. To kill all of them

type "killall -SIGQUIT nautilus". Also, if Firefox is running once and

the user does not know the PID, use the killall command - "killall -9

firefox". The killall command also uses case-sensitive kill signals (they

are all uppercase). Below demonstrates what will happen when the kill

signal is typed in lowercase. Notice that the command uses the "s" as a

parameter and then it does not know what to do with the rest of the

information. It then tries to use "igkill" as a kill signal, but no such

signal exists.

collier@Nacho-Laptop:~$ killall -sigkill nautilus

igkill: unknown signal; killall -l lists signals.

pkill - This command is a lot like killall except it allows partial

names. So, "pkill -9 unity" will kill any process whose name begins with

"unity".

xkill - This command allows users to kill a command by clicking the

window. In a terminal, type "xkill" and then the cursor will change.

Next, click a window to kill. The application should disappear and leave

the memory. Then, the cursor will return to normal.

There are many kill signals that each serve a particular purpose. Typing

"kill -l" will list the kill signals. Notice that all kill signals begin

with "SIG"; this means SIGnal.

kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD

18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN

22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO

30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1

36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5

40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9

44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13

52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9

56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5

60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1

64) SIGRTMAX

NOTE: Yes, certain numbers are missing because those signals are not

supported on my system, or they were discontinued. If you run the same

command, you may have different numbers missing/available.

TIP: Everyone has signals 1, 3, 9, and 15. Those are the most common

signals. It is important to learn those very well when administering

Linux systems.

Kill signals are not only used to close locked-up applications, but also

stop software from performing unallowed tasks. This means some of these

kill signals are part of security. Surprisingly, kill commands not only

stop/kill processes but they also pause, continue, and restart processes.

SIGHUP - The SIGHUP signal disconnects a process from the parent process.

This an also be used to restart processes. For example, "killall -SIGUP

compiz" will restart Compiz. This is useful for daemons with memory

leaks.

SIGINT - This signal is the same as pressing ctrl-c. On some systems,

"delete" + "break" sends the same signal to the process. The process is

interrupted and stopped. However, the process can ignore this signal.

SIGQUIT - This is like SIGINT with the ability to make the process

produce a core dump.

SIGILL - When a process performs a faulty, forbidden, or unknown

function, the system sends the SIGILL signal to the process. This is the

ILLegal SIGnal.

SIGTRAP - This signal is used for debugging purposes. When a process has

performed an action or a condition is met that a debugger is waiting for,

this signal will be sent to the process.

SIGABRT - This kill signal is the abort signal. Typically, a process will

initiate this kill signal on itself.

SIGBUS - When a process is sent the SIGBUS signal, it is because the

process caused a bus error. Commonly, these bus errors are due to a

process trying to use fake physical addresses or the process has its

memory alignment set incorrectly.

SIGFPE - Processes that divide by zero are killed using SIGFPE. Imagine

if humans got the death penalty for such math. NOTE: The author of this

article was recently drug out to the street and shot for dividing by

zero.

SIGKILL - The SIGKILL signal forces the process to stop executing

immediately. The program cannot ignore this signal. This process does not

get to clean-up either.

SIGUSR1 - This indicates a user-defined condition. This signal can be set

by the user by programming the commands in sigusr1.c. This requires the

programmer to know C/C++.

SIGSEGV - When an application has a segmentation violation, this signal

is sent to the process.

SIGUSR2 - This indicates a user-defined condition.

SIGPIPE - When a process tries to write to a pipe that lacks an end

connected to a reader, this signal is sent to the process. A reader is a

process that reads data at the end of a pipe.

SIGALRM - SIGALRM is sent when the real time or clock time timer expires.

SIGTERM - This signal requests a process to stop running. This signal can

be ignored. The process is given time to gracefully shutdown. When a

program gracefully shuts down, that means it is given time to save its

progress and release resources. In other words, it is not forced to stop.

SIGINT is very similar to SIGTERM.

SIGCHLD - When a parent process loses its child process, the parent

process is sent the SIGCHLD signal. This cleans up resources used by the

child process. In computers, a child process is a process started by

another process know as a parent.

SIGCONT - To make processes continue executing after being paused by the

SIGTSTP or SIGSTOP signal, send the SIGCONT signal to the paused process.

This is the CONTinue SIGnal. This signal is beneficial to Unix job

control (executing background tasks).

SIGSTOP - This signal makes the operating system pause a process's

execution. The process cannot ignore the signal.

SIGTSTP - This signal is like pressing ctrl-z. This makes a request to

the terminal containing the process to ask the process to stop

temporarily. The process can ignore the request.

SIGTTIN - When a process attempts to read from a tty (computer terminal),

the process receives this signal.

SIGTTOU - When a process attempts to write from a tty (computer

terminal), the process receives this signal.

SIGURG - When a process has urgent data to be read or the data is very

large, the SIGURG signal is sent to the process.

SIGXCPU - When a process uses the CPU past the allotted time, the system

sends the process this signal. SIGXCPU acts like a warning; the process

has time to save the progress (if possible) and close before the system

kills the process with SIGKILL.

SIGXFSZ - Filesystems have a limit to how large a file can be made. When

a program tries to violate this limit, the system will send that process

the SIGXFSZ signal.

SIGVTALRM - SIGVTALRM is sent when CPU time used by the process elapses.

SIGPROF - SIGPROF is sent when CPU time used by the process and by the

system on behalf of the process elapses.

SIGWINCH - When a process is in a terminal that changes its size, the

process receives this signal.

SIGIO - Alias to SIGPOLL or at least behaves much like SIGPOLL.

SIGPWR - Power failures will cause the system to send this signal to

processes (if the system is still on).

SIGSYS - Processes that give a system call an invalid parameter will

receive this signal.

SIGRTMIN* - This is a set of signals that varies between systems. They

are labeled SIGRTMIN+1, SIGRTMIN+2, SIGRTMIN+3,, and so on

(usually up to 15). These are user-defined signals; they must be

programmed in the Linux kernel's source code. That would require the user

to know C/C++.

SIGRTMAX* - This is a set of signals that varies between systems. They

are labeled SIGRTMAX-1, SIGRTMAX-2, SIGRTMAX-3,, and so on

(usually up to 14). These are user-defined signals; they must be

programmed in the Linux kernel's source code. That would require the user

to know C/C++.

SIGEMT - Processes receive this signal when an emulator trap occurs.

SIGINFO - Terminals may sometimes send status requests to processes. When

this happens, processes will also receive this signal.

SIGLOST - Processes trying to access locked files will get this signal.

SIGPOLL - When a process causes an asynchronous I/O event, that process

is sent the SIGPOLL signal.

Users can use these kill signals using one of the four kill commands.

When sending a signal to a process owned by another user (like root), the

user needs admin privileges and must use the sudo command. Be careful

though, misuse of these signals can cause system damage. For instance,

using SIGTERM on a GUI process like Compiz, X11, XFCE, Unity, Gnome-

shell, etc. will make the system unviewable.

