Linux Filesystem Hierarchy

Version 0.65

Binh Nguyen

<linuxfilesystem(at)yvahoo (dot) com(dot)au>
2004-07-30

This document outlines the set of requirements and guidelines for file and directory placement under the
Linux operating system according to those of the FSSTND v2.3 final (January 29, 2004) and also its actual
implementation on an arbitrary system. It is meant to be accessible to all members of the Linux community,
be distribution independent and is intended to discuss the impact of the FSSTND and how it has managed to
increase the efficiency of support interoperability of applications, system administration tools, development
tools, and scripts as well as greater uniformity of documentation for these systems.

Copyright 2003 Binh Nguyen

Trademarks are owned by their owners.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2; with no Invariant Sections, with no Front—Cover Texts, and with no

Back—Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

mailto:linuxfilesystem(at)yahoo(dot)com(dot)au

Linux

Filesystem Hierarchy

Table of Contents

Source and pre—formatted versions available 1
Chapter 1. Linux Filesystem Hierarchy 2
Lol FOTEWATM. ...oveeeiiieeeeeeeeeee et e e ettt e e e e e e et ettt eeeeseeetesb e eeeeeessssaannnns 2

1.2. The ROOE DIIECIOTY. ¢.uveeuveeteeteetietierteenteenteesteesbe et tebe e bt e bt esbeesbee bt e bt esbeesbeesbeenbeanbeanbeenbeesbeenbeenseennes 6

| G T o) 1 s RO TR PRPPRPPPPPPPPPPURPRPRt 7

L D00t ettt e ettt ettt et et ata e et eaata et e ————a——attaaaaa—aaaaaaaaannan_—__——————————atatatatatatarataaes 9

LS s BV ettt ettt ettt et et e et e e e et e et et er—e—atateataa—ea——a—aaaaa—a_na—_—————————————atatatttataaaaas 10

| T L= (TR RRORROPPPRPPPPPPRRRRRt 15

| IR 1701 1 1< TR PR OPROPPPPPPPPPPPRRRIRt 48

L8 JIIMIEIA ettt ettt e et e et e e eeeeeeeeeeeeeeeeeeeeseeeeeaaeaesee e e e e e annannananananaaabaaaraaaaaaaaataaaaa 49

L0 JLHD. ettt ettt et et et et et aaeaata et et et—taatataaaraaaaaaa aaannann_n_————————————tatatatatataaaaes 50

L. 10, JTOSEHTOUII ...ttt ettt et e e e s e s esesesesas s sssssassssssssssanssssassssesananes 51

) I 01T L OO OTOROROOPRPRPOPPPPPPPPPPPTRRIRt 52

LT 2 JTIIIIE ettt ettt e e e e et e e e e e e e eeeeeeeeeaaeaeaeaeaaataaaaaaaaaaaaaaannnnnnnn_n————————aaatatataattataaaae 53

1.12.1. Mounting and UNMOUNEINIEG.ccveeteeeeeteeieeieeteeteeteetesteenteeaeeseeeaeeeaseeabeeneeenseennesaeesneeans 53

I G TR) OO OO OO OO OO OO PO URUTRUPRRPRRRTONt 56

LA, JDTOC ¢ttt ettt ettt et ettt et et et et e a bt e a bt et e ea bt e et e e bt eat e eateeateeateeateeabeeabeenteeateeateeas 56

| I IR TR (o o | TSP PRRRRR 78

L L0 /SDIIL ettt ettt et e ee e e et et e e e e eeeeeaeeaaa et aaaaaaaetaaaaaaaaaaaaan_annan_————————————tatatatatataaaaa 79

LT JUST .ot e ettt eeeeett et —————————aeettttt————————————attttta———— 80

LB, VAL . oottt ee et ettt a e tetttta————————————attttta———— 84

LD, TV ettt ee ettt et aeettttt————————————attttta———— 87

120 JEIND. ettt ettt ettt ettt ettt ettt e a bt e a bt a bt ea bt e a bt ea bt e abeea bt eateeateeateeateeabeeabeeabeenteeateenteeas 88
Glossary, 89
Appendix A. UNIX System V Signals 95
Appendix B. Sources 96
Appendix C. About the Author 99
Appendix D. Contributors 100
Appendix E. Disclaimer. 101
Appendix F. Donations. 102
Appendix G. Feedback. 103
Appendix H. Free Documentation License 104
H.L. PREAMBLE.ottt ettt et e e e e e e eeeeeeeeaeeeeeaeeeeeeeeesesesesesesessssssssassssnnnnes 104

H.2. APPLICABILITY AND DEFINITIONS.....oottttiiiitiiiiieiieeeeeeeeeee e e 104

H.3. VERBATIM COPYIING .. .eeeeeeeeeeeeeeteteteeeeeeeeseeesesesessesesesssessssssesesessssssssssssssssessssnsnnes 105

H.4. COPYING IN QUANTITY ..ottt ettt e ettt eetae e e et e e e etaee e eateaeeeabeeeeeasaeeeensrens 106

H.S. MODIETCATIONS. ...t e e ee e et e eeeeeseeeseseseeeaeeseeeeeseeeeseseresesesessssasesssesessnsnnns 106

H.6. COMBINING DOCUMENTSccoootitiienieniirtiienieeeetenteste ettt ettt sbeestebesreeseenaessesneennes 107

Linux Filesystem Hierarchy

Table of Contents

Appendix H. Free Documentation License
H.7. COLLECTIONS OF DOCUMENTS.......cotttttiiiiiiee ettt eetee et eate e st e s s save e s s saaveeseanaees
H.8. AGGREGATION WITH INDEPENDENT WORKS.......coutiiiiiiiiietiee et
H.9. TRANSLATION.ctttiiiiiee ettt ettt ete e et e s ettt e s ettt e s sttt e s ssaaeeessabaeessaaeessssteeessnreeessraees
H.10. TERMINATION......oiiiiiiieiiiieie oottt ettt e ettt e ettt e s esate e s s et e e s sttt e s ssaaeessssateessaaeesssstresssreeessraees
H.11. FUTURE REVISIONS OF THIS LICENSEooiiiiiiiiiiiiieeeeee ettt e

H.12. ADDENDUM: How to use this [icense for your doCUMENtS.ceveerueerienienienieniesieeeene

Source and pre-formatted versions available

The source code and other machine readable formats of this book can be found on the Internet at the Linux
Documentation Project home page http://www.tldp.org The latest version of this document can be found at

http://cvsview.tldp.org/index.cgi/L.DP/guide/docbook/Linux—Filesystem—Hierarchy/

Source and pre—formatted versions available

http://www.tldp.org
http://cvsview.tldp.org/index.cgi/LDP/guide/docbook/Linux-Filesystem-Hierarchy/

Chapter 1. Linux Filesystem Hierarchy

1.1. Foreward

When migrating from another operating system such as Microsoft Windows to another; one thing that will
profoundly affect the end user greatly will be the differences between the filesystems.

What are filesystems?

A filesystem is the methods and data structures that an operating system uses to keep track of files on a disk or
partition; that is, the way the files are organized on the disk. The word is also used to refer to a partition or
disk that is used to store the files or the type of the filesystem. Thus, one might say I have two filesystems
meaning one has two partitions on which one stores files, or that one is using the extended filesystem,
meaning the type of the filesystem.

The difference between a disk or partition and the filesystem it contains is important. A few programs
(including, reasonably enough, programs that create filesystems) operate directly on the raw sectors of a disk
or partition; if there is an existing file system there it will be destroyed or seriously corrupted. Most programs
operate on a filesystem, and therefore won't work on a partition that doesn't contain one (or that contains one
of the wrong type).

Before a partition or disk can be used as a filesystem, it needs to be initialized, and the bookkeeping data
structures need to be written to the disk. This process is called making a filesystem.

Most UNIX filesystem types have a similar general structure, although the exact details vary quite a bit. The
central concepts are superblock, inode, data block, directory block, and indirection block. The superblock
contains information about the filesystem as a whole, such as its size (the exact information here depends on
the filesystem). An inode contains all information about a file, except its name. The name is stored in the
directory, together with the number of the inode. A directory entry consists of a filename and the number of
the inode which represents the file. The inode contains the numbers of several data blocks, which are used to
store the data in the file. There is space only for a few data block numbers in the inode, however, and if more
are needed, more space for pointers to the data blocks is allocated dynamically. These dynamically allocated
blocks are indirect blocks; the name indicates that in order to find the data block, one has to find its number in
the indirect block first.

Like UNIX, Linux chooses to have a single hierarchical directory structure. Everything starts from the root
directory, represented by /, and then expands into sub—directories instead of having so—called 'drives'. In the
Windows environment, one may put one's files almost anywhere: on C drive, D drive, E drive etc. Such a file
system is called a hierarchical structure and is managed by the programs themselves (program directories), not
by the operating system. On the other hand, Linux sorts directories descending from the root directory /
according to their importance to the boot process.

If you're wondering why Linux uses the frontslash / instead of the backslash \ as in Windows it's because it's
simply following the UNIX tradition. Linux, like Unix also chooses to be case sensitive. What this means is
that the case, whether in capitals or not, of the characters becomes very important. So this is not the same as
THIS. This feature accounts for a fairly large proportion of problems for new users especially during file
transfer operations whether it may be via removable disk media such as floppy disk or over the wire by way of
FTP.

Chapter 1. Linux Filesystem Hierarchy 2

Linux Filesystem Hierarchy

The filesystem order is specific to the function of a file and not to its program context (the majority of Linux
filesystems are 'Second Extended File Systems', short 'EXT2' (aka 'ext2fs' or 'extfs2') or are themselves
subsets of this filesystem such as ext3 and Reiserfs). It is within this filesystem that the operating system
determines into which directories programs store their files.

If you install a program in Windows, it usually stores most of its files in its own directory structure. A help
file for instance may be in C:\Program Files\[program name]\ or in C:\Program Files\[program—name]\help or
in C:\Program Files\[program —name]\humpty\dumpty\doo. In Linux, programs put their documentation into
/usr/share/doc/[program—name], man(ual) pages into /usr/share/man/man[1-9] and info pages into
/usr/share/info. They are merged into and with the system hierarchy.

As all Linux users know, unless you mount a partition or a device, the system does not know of the existence
of that partition or device. This might not appear to be the easiest way to provide access to your partitions or
devices, however it offers the advantage of far greater flexibility when compared to other operating systems.
This kind of layout, known as the unified filesystem, does offer several advantages over the approach that
Windows uses. Let's take the example of the /usr directory. This sub—directory of the root directory contains
most of the system executables. With the Linux filesystem, you can choose to mount it off another partition or
even off another machine over the network using an innumerable set of protocols such as NFS (Sun), Coda
(CMU) or AFS (IBM). The underlying system will not and need not know the difference. The presence of the
/usr directory is completely transparent. It appears to be a local directory that is part of the local directory
structure.

Compliance requires that:

fomm o fomm +
| | shareable | unshareable |
fomm o fomm +
|static | /usr | /etc |
| | /opt | /boot |
fomm o fomm +
|variable | /var/mail | /var/run |
| | /var/spool/news | /var/lock |
fomm o fomm +

"Shareable" files are defined as those that can be stored on one host and
used on others. "Unshareable" files are those that are not shareable. For
example, the files in user home directories are shareable whereas device
lock files are not. "Static" files include binaries, libraries,
documentation files and other files that do not change without system
administrator intervention. "Variable" files are defined as files that
are not static.

Another reason for this unified filesystem is that Linux caches a lot of disk accesses using system memory
while it is running to accelerate these processes. It is therefore vitally important that these buffers are flushed
(get their content written to disk), before the system closes down. Otherwise files are left in an undetermined
state which is of course a very bad thing. Flushing is achieved by 'unmounting' the partitions during proper
system shutdown. In other words, don't switch your system off while it's running! You may get away with it
quite often, since the Linux file system is very robust, but you may also wreak havoc upon important files.
Just hit ctrl-alt—del or use the proper commands (e.g. shutdown, poweroff, init 0). This will shut down the
system in a decent way which will thus, guarantee the integrity of your files.

Many of us in the Linux community have come to take for granted the existence of excellent books and

documents about Linux, an example being those produced by the Linux Documentation Project. We are used
to having various packages taken from different sources such as Linux FTP sites and distribution CD—ROMs

Chapter 1. Linux Filesystem Hierarchy 3

Linux Filesystem Hierarchy

integrate together smoothly. We have come to accept that we all know where critical files like mount can be
found on any machine running Linux. We also take for granted CD—ROM based distributions that can be run
directly from the CD and which consume only a small amount of physical hard disk or a RAM disk for some
variable files like /etc/passwd, etc. This has not always been the case.

During the adolescent years of Linux during the early to mid—90s each distributor had his own favorite
scheme for locating files in the directory hierarchy. Unfortunately, this caused many problems. The Linux File
System Structure is a document, which was created to help end this anarchy. Often the group, which creates
this document or the document itself, is referred to as the FSSTND. This is short for file system standard".
This document has helped to standardize the layout of file systems on Linux systems everywhere. Since the
original release of the standard, most distributors have adopted it in whole or in part, much to the benefit of all
Linux users.

Since the first draft of the standard, the FSSTND project has been coordinated by Daniel Quinlan and
development of this standard has been through consensus by a group of developers and Linux enthusiasts. The
FSSTND group set out to accomplish a number of specific goals. The first goal was to solve a number of
problems that existed with the current distributions at the time. Back then, it was not possible to have a
shareable /usr partition, there was no clear distinction between /bin and /usr/bin, it was not possible to set up a
diskless workstation, and there was just general confusion about what files went where. The second goal was
to ensure the continuation of some reasonable compatibility with the de—facto standards already in use in
Linux and other UNIX-like operating systems. Finally, the standard had to gain widespread approval by the
developers, distributors, and users within the Linux community. Without such support, the standard would be
pointless, becoming just another way of laying out the file system.

Fortunately, the FSSTND has succeeded though there are also some goals that the FSSTND project did not set
out to achieve. The FSSTND does not try to emulate the scheme of any specific commercial UNIX operating
system (e.g. SunOS, AIX, etc.) Furthermore, for many of the files covered by the FSSTND, the standard does
not dictate whether the files should be present, merely where the files should be if they are present. Finally,
for most files, the FSSTND does not attempt to dictate the format of the contents of the files. (There are some
specific exceptions when several different packages may need to know the file formats to work together
properly. For example, lock files that contain the process ID of the process holding the lock.) The overall
objective was to establish the location where common files could be found, if they existed on a particular
machine. The FSSTND project began in early August 1993. Since then, there have been a number of public
revisions of this document. The latest, v2.3 was released on January 29, 2004.

If you're asking "What's the purpose of all this? Well, the answer depends on who you are. If you are a Linux
user, and you don't administrate your own system then the FSSTND ensures that you will be able to find
programs where you'd expect them to be if you've already had experience on another Linux machine. It also
ensures that any documentation you may have makes sense. Furthermore, if you've already had some
experience with Unix before, then the FSSTND shouldn't be too different from what you're currently using,
with a few exceptions. Perhaps the most important thing is that the development of a standard brings Linux to
a level of maturity authors and commercial application developers feel they can support.

If you administer your own machine then you gain all the benefits of the FSSTND mentioned above. You may
also feel more secure in the ability of others to provide support for you, should you have a problem.
Furthermore, periodic upgrades to your system are theoretically easier. Since there is an agreed—upon
standard for the locations of files, package maintainers can provide instructions for upgrading that will not
leave extra, older files lying around your system inhabiting valuable disk space. The FSSTND also means that
there is more support from those providing source code packages for you to compile and install yourself. The
provider knows, for example, where the executable for sed is to be found on a Linux machine and can use that
in his installation scripts or Makefiles.

Chapter 1. Linux Filesystem Hierarchy 4

Linux Filesystem Hierarchy

If you run a large network, the FSSTND may ease many of your NFS headaches, since it specifically
addresses the problems which formerly made shared implementations of /usr impractical. If you are a
distributor, then you will be affected most by the Linux FSSTND. You may have to do a little extra work to
make sure that your distribution is FSSTND-compliant, but your users (and hence your business) will gain by
it. If your system is compliant, third party add—on packages (and possibly your own) will integrate smoothly
with your system. Your users will, of course, gain all the benefits listed above, and many of your support
headaches will be eased. You will benefit from all the discussion and thought that has been put into the
FSSTND and avoid many of the pitfalls involved in designing a filesystem structure yourself. If you adhere to
the FSSTND, you will also be able to take advantage of various features that the FSSTND was designed
around. For example, the FSSTND makes "live" CD—ROMs containing everything except some of the files in
the / and /var directories possible. If you write documentation for Linux, the FSSTND makes it much easier to
do so, which makes sense to the Linux community. You no longer need to worry about the specific location of
lock files on one distribution versus another, nor are you forced to write documentation that is only useful to
the users of a specific distribution. The FSSTND is at least partly responsible for the recent explosion of
Linux books being published.

If you are a developer, the existence of the FSSTND greatly eases the possibility for potential problems. You
can know where important system binaries are found, so you can use them from inside your programs or your
shell scripts. Supporting users is also greatly eased, since you don't have to worry about things like the
location of these binaries when resolving support issues. If you are the developer of a program that needs to
integrate with the rest of the system, the FSSTND ensures that you can be certain of the steps to meet this end.
For example, applications such as kermit, which access the serial ports, need to know they can achieve
exclusive access to the TTY device. The FSSTND specifies a common method of doing this so that all
compliant applications can work together. That way you can concentrate on making more great software for
Linux instead of worrying about how to detect and deal with the differences in flavors of Linux. The
widespread acceptance of the FSSTND by the Linux community has been crucial to the success of both the
standard and operating system. Nearly every modern distribution conforms to the Linux FSSTND. If your
implementation isn't at least partially FSSTND compliant, then it is probably either very old or you built it
yourself. The FSSTND itself contains a list of some of the distributions that aim to conform to the FSSTND.
However, there are some distributions that are known to cut some corners in their implementation of
FSSTND.

By no means does this mean that the standard itself is complete. There are still unresolved issues such as the
organization of architecture—independent scripts and data files /usr/share. Up until now, the 1386 has been the
primary platform for Linux, so the need for standardization of such files was non—existent.

The rapid progress in porting Linux to other architectures (MC680x0, Alpha, MIPS, PowerPC) suggests that
this issue will soon need to be dealt with. Another issue that is under some discussion is the creation of an /opt
directory as in SVR4. The goal for such a directory would be to provide a location for large commercial or
third party packages to install themselves without worrying about the requirements made by FSSTND for the
other directory hierarchies. The FSSTND provides the Linux community with an excellent reference
document and has proven to be an important factor in the maturation of Linux. As Linux continues to evolve,
so will the FSSTND.

Now, that we have seen how things should be, let's take a look at the real world. As you will see, the
implementation of this concept on Linux isn't perfect and since Linux has always attracted individualists who
tend to be fairly opinionated, it has been a bone of contention among users for instance which directories
certain files should be put into. With the arrival of different distributions, anarchy has once again descended
upon us. Some distributions put mount directories for external media into the / directory, others into /mnt. Red
Hat based distributions feature the /etc/sysconfig sub—hierarchy for configuration files concerning input and
network devices. Other distributions do not have this directory at all and put the appropriate files elsewhere or

Chapter 1. Linux Filesystem Hierarchy 5

Linux Filesystem Hierarchy

even use completely different mechanisms to do the same thing. Some distributions put KDE into /opt/, others
into /usr.

But even within a given file system hierarchy, there are inconsistencies. For example, even though this was
never the intention of the XFree86 group, XFree86 does indeed have its own directory hierarchy.

These problems don't manifest themselves as long as you compile programs yourself. You can adapt
configure scripts or Makefiles to your system's configuration or to your preference. It's a different story if you
install pre—compiled packages like RPMs though. Often these are not adaptable from one file system
hierarchy to another. What's worse: some RPMs might even create their own hierarchy. If you, say, install a
KDE RPM from the SuSE Linux distribution on your Mandrake system, the binary will be put into
/opt/kde2/bin. And thus it won't work, because Mandrake expects it to be in /usr/bin. There are of course ways
to circumvent this problem but the current situation is clearly untenable. Thus, all the leading Linux
distributors have joined the Linux Standard Base project, which is attempting to create a common standard for
Linux distributions. This isn't easy, since changing the file system hierarchy means a lot of work for
distributors so every distributor tries to push a standard which will allow them to keep as much of their own
hierarchy as possible. The LSB will also encompass the proposals made by the Filesystem Hierarchy Standard
project (FHS, former FSSTND).

1.2. The Root Directory

To comply with the FSSTND the following directories, or symbolic links to directories, are required in /.

/bin Essential command binaries

/boot Static files of the boot loader

/dev Device files

/etc Host-specific system configuration

/1ib Essential shared libraries and kernel modules
/media Mount point for removeable media

/mnt Mount point for mounting a filesystem temporarily
/opt Add-on application software packages

/sbin Essential system binaries

/srv Data for services provided by this system
/tmp Temporary files

/usr Secondary hierarchy

/var Variable data

The following directories, or symbolic links to directories, must be in /, if the corresponding subsystem is
installed:

/ —— the root directory

/home User home directories (optional)

/lib<qual> Alternate format essential shared libraries
(optional)

/root Home directory for the root user (optional)

Each directory listed above is described in detail in separate subsections further on in this document.

The reference system will be based upon Debian 3.0r0 (Woody), 2.4.18 kernel configured to a Redhat
kernel-2.4.18-i686.config file.

Hardware

Chapter 1. Linux Filesystem Hierarchy 6

Linux Filesystem Hierarchy

¢ Intel Celeron 766 Processor

¢ MSI MS-6309 V.2.0 Mainboard

¢ 512MB PQI PC133 SDRAM

¢ 16x Lite—On LTD-165H DVD-ROM

0 40x24x10 Sony CRX175A1 CD-RW

O NVIDIA RIVA 32MB TNT2 M64

¢ D-Link DFE-530TX 10/100 NIC

0 Realtek RTL8029(AS) 10 NIC

¢ Lucent Mars2 Linmodem

¢ C-Media CMI8738 PCI Audio Device

¢ Miro DC-30 VIVO

¢ Aopen KF-45A Miditower Case

0 Acer Accufeel Keyboard

¢ Genius Netscroll+ Mouse

¢ Compaq MV500 Presario Monitor
Software

¢ Windows XP on /dev/hdal
O FreeBSD 4.2 on /dev/hda2
0 Redhat 8.0 on /dev/hda5

¢ Debian 3.0r0 on /dev/hda6
¢ Mandrake 9.1 on /dev/hda7
¢ Swap partition on /dev/hda8

As we all know Linux file system starts with /, the root directory. All other directories are 'children' of this
directory. The partition which the root file system resides on is mounted first during boot and the system will
not boot if it doesn't find it. On our reference system, the root directory contains the following
sub—directories:

bin/ dev/ home/ lost+found/ proc/ sbin/ usr/ cdrom/ opt/ vinlinuz boot/ etc/ lib/ mnt/ root/ tmp/ var/ dvd/
floppy/ initrd/ /tftpboot

In days past it was also the home directory of 'root' but now he has been given his own directory for reasons
that will be explained further on in this document.

1.3. /bin

Unlike /sbin, the bin directory contains several useful commands that are of use to both the system
administrator as well as non—privileged users. It usually contains the shells like bash, csh, etc.... and
commonly used commands like cp, mv, rm, cat, Is. For this reason and in contrast to /usr/bin, the binaries in
this directory are considered to be essential. The reason for this is that it contains essential system programs
that must be available even if only the partition containing / is mounted. This situation may arise should you
need to repair other partitions but have no access to shared directories (ie. you are in single user mode and
hence have no network access). It also contains programs which boot scripts may depend on.

Compliance to the FSSTND means that there are no subdirectories in /bin and that the following commands,
or symbolic links to commands, are located there.

cat Utility to concatenate files to standard output
chgrp Utility to change file group ownership

Chapter 1. Linux Filesystem Hierarchy

Linux Filesystem Hierarchy

chmod Utility to change file access permissions

chown Utility to change file owner and group

cp Utility to copy files and directories

date Utility to print or set the system data and time
dd Utility to convert and copy a file

df Utility to report filesystem disk space usage
dmesg Utility to print or control the kernel message buffer
echo Utility to display a line of text

false Utility to do nothing, unsuccessfully

hostname Utility to show or set the system's host name
kill Utility to send signals to processes

1n Utility to make links between files

login Utility to begin a session on the system

1s Utility to list directory contents

mkdir Utility to make directories

mknod Utility to make block or character special files
more Utility to page through text

mount Utility to mount a filesystem

mv Utility to move/rename files

Ps Utility to report process status

pwd Utility to print name of current working directory
rm Utility to remove files or directories

rmdir Utility to remove empty directories

sed The "sed' stream editor

sh The Bourne command shell

stty Utility to change and print terminal line settings
su Utility to change user ID

sync Utility to flush filesystem buffers

true Utility to do nothing, successfully

umount Utility to unmount file systems

uname Utility to print system information

If /bin/sh is not a true Bourne shell, it must be a hard or symbolic link to
the real shell command.

The rationale behind this is because sh and bash mightn't necessarily behave
in the same manner. The use of a symbolic link also allows users to easily
see that /bin/sh is not a true Bourne shell.

The [and test commands must be placed together in either /bin or /usr/bin.
The requirement for the [and test commands to be included as binaries
(even if implemented internally by the shell) is shared with the POSIX.2

standard.

The following programs, or symbolic links to programs, must be in /bin if the
corresponding subsystem is installed:

csh The C shell (optional)

ed The “ed' editor (optional)

tar The tar archiving utility (optional)

cpio The cpio archiving utility (optional)
gzip The GNU compression utility (optional)
gunzip The GNU uncompression utility (optional)
zcat The GNU uncompression utility (optional)
netstat The network statistics utility (optional)
ping The ICMP network test utility (optional)

If the gunzip and zcat programs exist, they must be symbolic or hard links to
gzip. /bin/csh may be a symbolic link to /bin/tcsh or /usr/bin/tcsh.

The tar, gzip and cpio commands have been added to make restoration of a

Chapter 1. Linux Filesystem Hierarchy

Linux Filesystem Hierarchy
system possible (provided that / is intact).

Conversely, if no restoration from the root partition is ever expected,
then these binaries might be omitted (e.g., a ROM chip root, mounting /usr
through NFS). If restoration of a system is planned through the network,
then ftp or tftp (along with everything necessary to get an ftp connection)
must be available on the root partition.

1.4. /boot

This directory contains everything required for the boot process except for configuration files not needed at
boot time (the most notable of those being those that belong to the GRUB boot—loader) and the map installer.
Thus, the /boot directory stores data that is used before the kernel begins executing user—mode programs. This
may include redundant (back—up) master boot records, sector/system map files, the kernel and other important
boot files and data that is not directly edited by hand. Programs necessary to arrange for the boot loader to be
able to boot a file are placed in /sbin. Configuration files for boot loaders are placed in /etc. The system kernel
is located in either / or /boot (or as under Debian in /boot but is actually a symbolically linked at / in
accordance with the FSSTND).

/boot/boot.0300
Backup master boot record.

/boot/boot.b
This is installed as the basic boot sector. In the case of most modern distributions it is actually a
symbolic link to one of four files /boot/boot—bmp.b, /boot/boot—menu.b, /boot/boot—text.b,
/boot/boot—compat.b which allow a user to change the boot—up schema so that it utilises a splash
screen, a simple menu, a text based interface or a minimal boot loader to ensure compatibility
respectively. In each case re—installation of lilo is necessary in order to complete the changes. To
change the actual 'boot—logo' you can either use utilities such as fblogo or the more refined
bootsplash.

/boot/chain.b
Used to boot non—Linux operating systems.

/boot/config—kernel—version
Installed kernel configuration. This file is most useful when compiling kernels on other systems or
device modules. Below is a small sample of what the contents of the file looks like.

CONFIG_X86=y
CONFIG_MICROCODE=m
CONFIG_X86_MSR=m
CONFIG_MATH_EMULATION=y
CONFIG_MTRR=y
CONFIG_MODULES=y
CONFIG_MODVERSIONS=y
CONFIG_SCSI_DEBUG=m
CONFIG_I20=m
CONFIG_ARCNET_ETH=y
CONFIG_FMV18X=m
CONFIG_HPLAN_PLUS=m
CONFIG_ETHI16I=m
CONFIG_NE2000=m
CONFIG_HISAX HFC_PCI=y
CONFIG_ISDN_DRV_AVMBI1_C4=m
CONFIG_USB_RIO500=m
CONFIG_QUOTA=y
CONFIG_AUTOFS_FS=m
CONFIG_ADFS_FS=m

Chapter 1. Linux Filesystem Hierarchy 9

Linux Filesystem Hierarchy

CONFIG_AFFS_FS=m
CONFIG_HFS_FS=m
CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_UMSDOS_FS=m
CONFIG_FBCON_VGA=m
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y
CONFIG_SOUND=m
CONFIG_SOUND_CMPCI=m
CONFIG_AEDSP16=m

As you can see, it's rather simplistic. The line begins with the configuration option and whether it's
configured as part of the kernel, as a module or not at all. Lines beginning with a # symbol are
comments and are not interpreted during processing.

/boot/os2_d.b
Used to boot to the 0S/2 operating system.

/boot/map
Contains the location of the kernel.

/boot/vmlinuz, /boot/vmlinuz—kernel—version
Normally the kernel or symbolic link to the kernel.

/boot/grub
This subdirectory contains the GRUB configuration files including boot—up images and sounds.
GRUB is the GNU GRand Unified Bootloader, a project which intends to solve all bootup problems
once and for all. One of the most interesting features, is that you don't have to install a new partition
or kernel, you can change all parameters at boot time via the GRUB Console, since it knows about the
filesystems.

/boot/grub/device.map
Maps devices in /dev to those used by grub. For example, (/dev/fd0) is represented by /dev/fd0 and
(hd0, 4) is referenced by /dev/hdas.

/boot/grub/grub.conf, /boot/grub/menu.lst
Grub configuration file.

/boot/grub/messages
Grub boot—up welcome message.

/boot/grub/splash.xpm.gz
Grub boot—up background image.

1.5. /dev

/dev is the location of special or device files. It is a very interesting directory that highlights one important
aspect of the Linux filesystem — everything is a file or a directory. Look through this directory and you should
hopefully see hdal, hda2 etc.... which represent the various partitions on the first master drive of the system.
/dev/cdrom and /dev/fd0 represent your CD—ROM drive and your floppy drive. This may seem strange but it
will make sense if you compare the characteristics of files to that of your hardware. Both can be read from and
written to. Take /dev/dsp, for instance. This file represents your speaker device. Any data written to this file
will be re—directed to your speaker. If you try 'cat /boot/vmlinuz > /dev/dsp' (on a properly configured system)
you should hear some sound on the speaker. That's the sound of your kernel! A file sent to /dev/Ip0 gets
printed. Sending data to and reading from /dev/ttySO will allow you to communicate with a device attached
there — for instance, your modem.

The majority of devices are either block or character devices; however other types of devices exist and can be
created. In general, 'block devices' are devices that store or hold data, 'character devices' can be thought of as

Chapter 1. Linux Filesystem Hierarchy 10

Linux Filesystem Hierarchy

devices that transmit or transfer data. For example, diskette drives, hard drives and CD—ROM drives are all
block devices while serial ports, mice and parallel printer ports are all character devices. There is a naming
scheme of sorts but in the vast majority of cases these are completely illogical.

total 724

1lrwXrwXrwx 1 root root 13 Sep 28 18:06 MAKEDEV -> /sbin/MAKEDEV
CrWw—Yw———— 1 root audio 14, 14 Oct 7 16:26 admmidiO

CrWw—Yrw———— 1 root audio 14, 30 Oct 7 16:26 admmidil

1rwXrwXrwx 1 root root 11 Oct 7 16:26 amidi —-> /dev/amidiO
Crw—Yrw———— 1 root audio 14, 13 Oct 7 16:26 amidiO

Crw—Yw———— 1 root audio 14, 29 Oct 7 16:26 amidil

Crw—Yw———— 1 root audio 14, 11 Oct 7 16:26 amixer0

CIW—rw———— 1 root audio 14, 27 Oct 7 16:26 amixerl

drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 ataraid

1rwXrwxXrwx 1 root root 11 Oct 7 16:26 audio —> /dev/audioO
CYrW—Yrw———— 1 root audio 14, 4 Oct 7 16:26 audioO

CYrW—Yrw———— 1 root audio 14, 20 Oct 7 16:26 audiol

CrwW—Yw———— 1 root audio 14, 7 Mar 15 2002 audioctl

1rwXrwXrwx 1 root root 9 Oct 14 22:51 cdrom —> /dev/scdl
1lrwXrwxXrwx 1 root root 9 Oct 14 22:52 cdroml -> /dev/scdO
QIElj——————= 1 root tty 5, 1 Jan 19 20:47 console

1rwWXrWwXIrwx 1 root root 11 Sep 28 18:06 core -> /proc/kcore
CrwW—Yrw———— 1 root audio 14, 10 Oct 7 16:26 dmfmO

CIW—rw———— 1 root audio 14, 26 Oct 7 16:26 dmfml

CrwW—Yw———— 1 root audio 14, 9 Oct 7 16:26 dmmidiO

CrWw—Yw———— 1 root audio 14, 25 Oct 7 16:26 dmmidil

1rwXrwxrwx 1 root root 9 Oct 7 16:26 dsp -> /dev/dspO
CrW—Yrw———— 1 root audio 14, 3 Oct 7 16:26 dsp0

CrW—Yrw———— 1 root audio 14, 19 Oct 7 16:26 dspl

Crw——w———— 1 root video 29, 0 Mar 15 2002 fbO

Crw——w———— 1 root video 29, 1 Mar 15 2002 fbOautodetect
Crw——w———— 1 root video 29, 0 Mar 15 2002 fbOcurrent
CIW——W———— 1 root video 29, 32 Mar 15 2002 fbl

Crw——w———— 1 root video 29, 33 Mar 15 2002 fblautodetect
Crw——w———— 1 root video 29, 32 Mar 15 2002 fblcurrent
1rWXrWwXTrwx 1 root root 13 Sep 28 18:05 fd -> /proc/self/fd
brw-rw———— 1 root floppy 2. 0 Mar 15 2002 £dO

brw-rw———— 1 root floppy 2. 1 Mar 15 2002 fdil

CrW——W——W— 1 root root i, 7 Sep 28 18:06 full

brw—rw———-— 1 root disk 3, 0 Mar 15 2002 hda

brw—rw———-— 1 root disk 3, 64 Mar 15 2002 hdb

brw—rw———-— 1 root disk 22, 0 Mar 15 2002 hdc

brw—rw———-— 1 root disk 22, 64 Mar 15 2002 hdd

drwxr—-xr—-x 2 root root 12288 Sep 28 18:05 ida

PIEf=—————= 1 root root 0 Jan 19 20:46 initctl

brw—rw———-— 1 root disk 1, 250 Mar 15 2002 initrd

drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 input

CrW—Yrw———— 1 root dialout 45, 128 Mar 15 2002 ipppO

CrwW—Yrw———— 1 root dialout 45, 0 Mar 15 2002 isdnO

CrwW—Yrw———— 1 root dialout 45, 64 Mar 15 2002 isdnctrlO
CrwW—Yrw———— 1 root dialout 45, 255 Mar 15 2002 isdninfo

Crw——————— 1 root root 10, 4 Mar 15 2002 jbm

Crw—r————— 1 root kmem i, 2 Sep 28 18:06 kmem

brw—rw———-— 1 root cdrom 24, 0 Mar 15 2002 lmscd

Crw——————— 1 root root 10, 0 Mar 15 2002 logibm

brw-—rw———— 1 root disk 7, 0 Sep 28 18:06 loopO

brw-—rw———— 1 root disk 7, 1 Sep 28 18:06 loopl

CrWw—Irw———— 1 root 1p 6, 0 Mar 15 2002 1p0

CIW—Xw———— 1 root 1p 6, 1 Mar 15 2002 1pl

CIW—Xrw———— 1 root 1p 6, 2 Mar 15 2002 1p2

Crw—r————— 1 root kmem i, 1 Sep 28 18:06 mem

Chapter 1. Linux Filesystem Hierarchy

Linux Filesystem Hierarchy

1rwXrwXrwx 1 root root 10 Oct 7 16:26 midi -> /dev/midi0
CrWw—Yrw———— 1 root audio 14, 2 Oct 7 16:26 midiO
Crw—Yw———— 1 root audio 14, 18 Oct 7 16:26 midil
1rwXrwxXrwx 1 root root 11 Oct 7 16:26 mixer —> /dev/mixer(
CrW—Xrw—Irw-— 1 root root 14, 0 Nov 11 16:22 mixer0
CrW—rw———-— 1 root audio 14, 16 Oct 7 16:26 mixerl
1rwXrwxrwx 1 root root 11 Oct 7 06:50 modem —> /dev/ttyLTO
CrW—Yrw———— 1 root audio 31, 0 Mar 15 2002 mpud40Oldata
CrW—Yrw———— 1 root audio 31, 1 Mar 15 2002 mpu40Olstat
CrwW—Yw———— 1 root audio 14, 8 Oct 7 16:26 music
CIW—YW—TrwW— 1 root root i, 3 Sep 28 18:06 null
CrW—YW—Yw-— 1 root root 195, 0 Jan 6 03:03 nvidiaO
CrW—YW—Yw-— 1 root root 195, 1 Jan 6 03:03 nvidial
CrW—YW—Yw-— 1 root root 195, 255 Jan 6 03:03 nvidiactl
CrW—Irw———— 1 root 1p 6, 0 Mar 15 2002 parO
CIW—YXw———— 1 root 1p 6, 1 Mar 15 2002 parl
CIW—YXw———— 1 root 1p 6, 2 Mar 15 2002 parz
—IrW—r——r—-— 1 root root 665509 Oct 7 16:41 pcm

Crw—r————— 1 root kmem i, 4 Sep 28 18:06 port
CrW—Yrw———— 1 root dip 108, 0 Sep 28 18:07 ppp

Crw——————— 1 root root 10, 1 Mar 15 2002 psaux
CIW—YW—YwW— 1 root root i, 8 Sep 28 18:06 random
CrWw—Yrw———— 1 root root 10, 135 Mar 15 2002 rtc

brw—rw———-— 1 root cdrom 1, 0 Mar 15 2002 scdO
brw—rw———-— 1 root cdrom 1, 1 Mar 15 2002 scdl
brw—rw———-— 1 root disk 8, 0 Mar 15 2002 sda

brw—rw———-— 1 root disk 8, 1 Mar 15 2002 sdal
brw—rw———-— 1 root disk 8, 2 Mar 15 2002 sdaz
brw—rw———-— 1 root disk 8, 3 Mar 15 2002 sda3
brw—rw———-— 1 root disk 8, 4 Mar 15 2002 sda4d
brw—rw———-— 1 root disk 8, 16 Mar 15 2002 sdb

brw—rw———-— 1 root disk 8, 17 Mar 15 2002 sdbl
brw—rw———-— 1 root disk 8, 18 Mar 15 2002 sdb2
brw—rw———-— 1 root disk 8, 19 Mar 15 2002 sdb3
brw—rw———-— 1 root disk 8, 20 Mar 15 2002 sdb4
CrW—Yrw———— 1 root audio 14, 1 Oct 7 16:26 sequencer
1rwXrwXrwx 1 root root 10 Oct 7 16:26 sequencer2 —-> /dev/music
1rWXrWwXIrwx 1 root root 4 Sep 28 18:05 stderr —> fd/2
1rWwXrWwXTrwx 1 root root 4 Sep 28 18:05 stdin -> £d/O0
1rWwXrWwXTrwx 1 root root 4 Sep 28 18:05 stdout —-> fd/1
CIW—YW—YwW— 1 root tty 5, 0 Sep 28 18:06 tty

Crw——————— 1 root root 4, 0 Sep 28 18:06 tty0
Crw——————— 1 root root 4, 1 Jan 19 14:59 ttyl
CrW—Yrw———— 1 root dialout 62, 64 Oct 7 06:50 ttyLTO
CrW—Yrw———— 1 root dialout 4, 64 Mar 15 2002 ttySO
CrW—Yrw———— 1 root dialout 4, 65 Mar 15 2002 ttySl
CrW—Yrw———— 1 root dialout 4, 66 Mar 15 2002 ttyS2
CrW—Yrw———— 1 root dialout 4, 67 Mar 15 2002 ttyS3
CrW—Yrw———— 1 root dialout 188, 0 Mar 15 2002 ttyUSBO
CrW—Yrw———— 1 root dialout 188, 1 Mar 15 2002 ttyUSB1
Cr====i—= 1 root root 1, 9 Jan 19 20:46 urandom
drwxr—-xr—-x 2 root root 4096 Sep 28 18:05 usb

QI =E=——== 1 root adm 0 Jan 19 14:58 xconsole
CIW—YW—YwW— 1 root root i, 5 Sep 28 18:06 zero

Some common device files as well as their equivalent counterparts under Windows that you may wish to
remember are:

/dev/ttySO (First communications port, COM1)

First serial port (mice, modems).
/dev/psaux (PS/2)

Chapter 1. Linux Filesystem Hierarchy

Linux Filesystem Hierarchy

PS/2 mouse connection (mice, keyboards).

/dev/Ip0 (First printer port, LPT1)
First parallel port (printers, scanners, etc).

/dev/dsp (First audio device)
The name DSP comes from the term digital signal processor, a specialized processor chip optimized
for digital signal analysis. Sound cards may use a dedicated DSP chip, or may implement the
functions with a number of discrete devices. Other terms that may be used for this device are digitized
voice and PCM.

/dev/usb (USB Devices)
This subdirectory contains most of the USB device nodes. Device name allocations are fairly
simplistic so no elaboration is be necessary.

/dev/sda (C:\, SCSI device)
First SCSI device (HDD, Memory Sticks, external mass storage devices such as CD—ROM drives on
laptops, etc).

/dev/scd (D:\, SCSI CD-ROM device)
First SCSI CD-ROM device.

/dev/js0 (Standard gameport joystick)
First joystick device.

Devices are defined by type, such as 'block’ or 'character’, and 'major' and 'minor' number. The major number
is used to categorize a device and the minor number is used to identify a specific device type. For example, all
IDE device connected to the primary controller have a major number of 3. Master and slave devices, as well
as individual partitions are further defined by the use of minor numbers. These are the two numbers precede
the date in the following display:

#1s -1 /dev/hd*

brw—rw———-— 1 root disk 3, 0 Mar 15 2002 /dev/hda
brw-rw———- 1 root disk 3, 1 Mar 15 2002 /dev/hdal
brw-rw———-— 1 root disk 3, 10 Mar 15 2002 /dev/hdalO
brw-rw———-— 1 root disk 3, 11 Mar 15 2002 /dev/hdall
brw-rw———-— 1 root disk 3, 12 Mar 15 2002 /dev/hdal2
brw-rw———-— 1 root disk 3, 13 Mar 15 2002 /dev/hdal3
brw-rw———-— 1 root disk 3, 14 Mar 15 2002 /dev/hdal4
brw-rw———-— 1 root disk 3, 15 Mar 15 2002 /dev/hdal5
brw-rw———-— 1 root disk 3, 16 Mar 15 2002 /dev/hdalé6
brw-rw———— 1 root disk 3, 17 Mar 15 2002 /dev/hdal7
brw-rw———-— 1 root disk 3, 18 Mar 15 2002 /dev/hdalS8
brw-rw———-— 1 root disk 3, 19 Mar 15 2002 /dev/hdal9
brw-rw———- 1 root disk 3, 2 Mar 15 2002 /dev/hda2
brw-rw———-— 1 root disk 3, 20 Mar 15 2002 /dev/hda20
brw—rw———- 1 root disk 3, 3 Mar 15 2002 /dev/hda3
brw-rw———- 1 root disk 3, 4 Mar 15 2002 /dev/hda4d
brw—rw———-— 1 root disk 3, 5 Mar 15 2002 /dev/hdab
brw—rw———-— 1 root disk 3, 6 Mar 15 2002 /dev/hda6
brw-rw———- 1 root disk 3, 7 Mar 15 2002 /dev/hda7
brw—rw———-— 1 root disk 3, 8 Mar 15 2002 /dev/hda8
brw—rw———-— 1 root disk 3, 9 Mar 15 2002 /dev/hda9
brw-rw———- 1 root disk 3, 64 Mar 15 2002 /dev/hdb
brw—rw———-— 1 root disk 3, 65 Mar 15 2002 /dev/hdbl
brw-rw———-— 1 root disk 3, 74 Mar 15 2002 /dev/hdblO
brw-rw———-— 1 root disk 3, 75 Mar 15 2002 /dev/hdbll
brw-rw———-— 1 root disk 3, 76 Mar 15 2002 /dev/hdbl2
brw-rw———-— 1 root disk 3, 77 Mar 15 2002 /dev/hdbl3
brw-rw———-— 1 root disk 3, 78 Mar 15 2002 /dev/hdbl4
brw-rw———-— 1 root disk 3, 79 Mar 15 2002 /dev/hdbl5

Chapter 1. Linux Filesystem Hierarchy 13

Linux Filesystem Hierarchy

brw-rw———— 1 root disk 3, 80 Mar 15 2002 /dev/hdblé6
brw-rw———— 1 root disk 3, 81 Mar 15 2002 /dev/hdbl7
brw-rw———-— 1 root disk 3, 82 Mar 15 2002 /dev/hdblS8
brw-rw———-— 1 root disk 3, 83 Mar 15 2002 /dev/hdbl9
brw—rw———-— 1 root disk 3, 66 Mar 15 2002 /dev/hdb2
brw-rw———-— 1 root disk 3, 84 Mar 15 2002 /dev/hdb20
brw—rw———-— 1 root disk 3, 67 Mar 15 2002 /dev/hdb3
brw—rw———-— 1 root disk 3, 68 Mar 15 2002 /dev/hdb4
brw—rw———-— 1 root disk 3, 69 Mar 15 2002 /dev/hdb5
brw—rw———-— 1 root disk 3, 70 Mar 15 2002 /dev/hdbé6
brw—rw———-— 1 root disk 3, 71 Mar 15 2002 /dev/hdb7
brw-rw———- 1 root disk 3, 72 Mar 15 2002 /dev/hdb8
brw—rw———-— 1 root disk 3, 73 Mar 15 2002 /dev/hdb9
brw-rw———- 1 root disk 22, 0 Mar 15 2002 /dev/hdc
brw-rw———- 1 root disk 22, 64 Mar 15 2002 /dev/hdd

The major number for both hda and hdb devices is 3. Of course, the minor number changes for each specific
partition. The definition of each major number category can be examined by looking at the contents of the
/usr/src/linux/include/linux/major.h file. The devices.txt also documents major and minor numbers. It is
located in the /ust/src/linux/Documentation directory. This file defines the major numbers. Almost all files
devices are created by default at the install time. However, you can always create a device using the mknod
command or the MAKEDEYV script which is located in the /dev directory itself. Devices can be created with
this utility by supplying the device to be created, the device type (block or character) and the major and minor
numbers. For example, let's say you have accidentally deleted /dev/ttySO (COM1 under Windows), it can be
recreated using the following command

mknod ttySO ¢ 4 64

For those of us who are rather lazy you can simply run the MAKEDEYV script as such

MAKEDEYV *

which will create all devices known.

If is possible that /dev may also contain a MAKEDEYV .local for the creation of any local device files.

In general and as required by the FSSTND, MAKEDEYV will have provisions for creating any device that may
be found on the system, not just those that a particular implementation installs.

For those of you who are wondering why Linux is using such a primitive system to reference devices its
because we haven't been able to devise a sufficiently sophisticated mechanism which provides enough
advantages over the current system in order to achieve widespread adoption.

To date (as of kernel version 2.4), the best attempt has been made by Richard Gooch of the CSIRO. It's called
devfsd and has been a part of the kernel for a number of years now. It has been sanctioned by the kernel
developers and Linus himself and details of its implementation can be found at
/usr/src/linux/Documentation/filesystems/devfs/README. Below is an excerpt from this document.

Devfs is an alternative to "real" character and block special devices on your root filesystem. Kernel device
drivers can register devices by name rather than major and minor numbers. These devices will appear in devfs
automatically, with whatever default ownership and protection the driver specified. A daemon (devfsd) can be
used to override these defaults. Devfs has been in the kernel since 2.3.46.

Chapter 1. Linux Filesystem Hierarchy 14

Linux Filesystem Hierarchy

NOTE that devfs is entirely optional. If you prefer the old disc—based device nodes, then simply leave
CONFIG_DEVFS_FS=n (the default). In this case, nothing will change. ALSO NOTE that if you do enable
devfs, the defaults are such that full compatibility is maintained with the old devices names.

There are two aspects to devfs: one is the underlying device namespace, which is a namespace just like any
mounted filesystem. The other aspect is the filesystem code which provides a view of the device namespace.
The reason I make a distinction is because devfs can be mounted many times, with each mount showing the
same device namespace. Changes made are global to all mounted devfs filesystems. Also, because the devfs
namespace exists without any devfs mounts, you can easily mount the root filesystem by referring to an entry
in the devfs namespace.

The cost of devfs is a small increase in kernel code size and memory usage. About 7 pages of code (some of
that in __init sections) and 72 bytes for each entry in the namespace. A modest system has only a couple of
hundred device entries, so this costs a few more pages. Compare this with the suggestion to put /dev on a
ramdisc.

On a typical machine, the cost is under 0.2 percent. On a modest system with 64 MBytes of RAM, the cost is
under 0.1 percent. The accusations of "bloatware" levelled at devfs are not justified.

As of kernel version 2.6, devfs has been marked obsolete and has now been replaced by udev. A system very
similar (at least from a the end user's point of view) to devfs but which works entirely in userspace. An
overview of udev can be found at

http://www .kroah.com/linux/talks/ols 2003 udev paper/Reprint—Kroah—Hartman—OI.S2003.pdf

1.6. /etc

This is the nerve center of your system, it contains all system related configuration files in here or in its
sub—directories. A "configuration file" is defined as a local file used to control the operation of a program; it
must be static and cannot be an executable binary. For this reason, it's a good idea to backup this directory
regularly. It will definitely save you a lot of re—configuration later if you re—install or lose your current
installation. Normally, no binaries should be or are located here.

lete/X11/
This directory tree contains all the configuration files for the X Window System. Users should note
that many of the files located in this directory are actually symbolic links to the /ust/X11R6 directory
tree. Thus, the presence of these files in these locations can not be certain.

/letc/X11/XF86Config, /etc/X11/XF86Config—4
The 'X' configuration file. Most modern distributions possess hardware autodetection systems that
enable automatic creation of a valid file. Should autodetection fail a configuration file can also be
created manually provided that you have sufficient knowledge about your system. It would be
considered prudent not to attempt to type out a file from beginning to end. Rather, use common
configuration utilities such as xf86config, XF86Setup and xf86cfg to create a workable template.
Then, using suitable documentation commence optimization through intuition and/or trial and error.
Options that can be configured via this file include X modules to be loaded on startup, keyboard,
mouse, monitor and graphic chipset type. Often, commercial distributions will include their own X
configuration utilities such as XDrake on Mandrake and also Xconfiguration on Redhat. Below is a
sample X configuration file from the reference system

BEGIN DEBCONEF SECTION
XF86Config-4 (XFree86 server configuration file) generated by dexconf, the

Chapter 1. Linux Filesystem Hierarchy 15

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf

Linux Filesystem Hierarchy

(Type "man XF86Config-4" at the shell prompt.)

If you want your changes to this file preserved by dexconf,
make changes

"### END DEBCONF SECTION" line below.

dpkg-reconfigure xserver—-xfree86

generated

S o o e e o o o 3e o o o e e o o

common/FAQ.gz.

Section "Files"

FontPath "unix/:7100"
local font server

1f the local font server has problems,
we can fall back on these

FontPath "/usr/lib/X11/fonts/misc"
FontPath "/usr/lib/X11/fonts/cyrillic"
FontPath "/usr/lib/X11/fonts/100dpi/:unscaled"
FontPath "/usr/lib/X11/fonts/75dpi/:unscaled"
FontPath "/usr/lib/X11/fonts/Typel"
FontPath "/usr/lib/X11/fonts/Speedo"
FontPath "/usr/1lib/X11/fonts/100dpi"
FontPath "/usr/lib/X11/fonts/75dpi"

EndSection

Section "Module"

Load "GLcore"
Load "bitmap"
Load "dbe"
Load "ddc"
Load "dri"
Load "extmod"
Load "freetype"
Load "glx"
Load "intl0"
Load "pex5"
Load "record"
Load "speedo"
Load "typel"
Load "vbe"
Load "xie"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "keyboard"

Option "CoreKeyboard"

Option "XkbRules" "xfree86"

Option "XkbModel" "pclO4"

Option "XkbLayout" "us"
EndSection

Section "InputDevice"
Identifier "Configured Mouse"
Driver "mouse"

Chapter 1. Linux Filesystem Hierarchy

Debian X Configuration tool, using values from the debconf database.

Edit this file with caution, and see the XF86Config-4 manual page.

before the "### BEGIN DEBCONF SECTION" line above, and/or after the

To change things within the debconf section, run the command:
as root. Also see "How do I add custom sections to a dexconf-

XF86Config or XF86Config-4 file?" in /usr/share/doc/xfree86—

16

Linux Filesystem Hierarchy

Option "CorePointer"
Option "Device" "/dev/psaux"
Option "Protocol" "NetMousePS/2"
Option "Emulate3Buttons" "true"
Option "ZAx1isMapping" "4 5"
EndSection
Section "InputDevice"
Identifier "Generic Mouse"
Driver "mouse"
Option "SendCoreEvents" "true"
Option "Device" "/dev/input/mice"
Option "Protocol" "ImPS/2"
Option "Emulate3Buttons" "true"
Option "ZAx1isMapping" "4 5"
EndSection
Section "Device"
Identifier "Generic Video Card"
Driver "nv"
Option "UseFBDev" "true"
Option "UseFBDev" "false"
EndSection
Section "Monitor"
Identifier "Generic Monitor"
HorizSync 30-38
VertRefresh 43-95
Option "DPMS"
EndSection
Section "Screen"
Identifier "Default Screen"
Device "Generic Video Card"
Monitor "Generic Monitor"
DefaultDepth 16
SubSection "Display"
Depth 1
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 4
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 8
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 15
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 16
Modes "800x600" "640x480"
EndSubSection
SubSection "Display"
Depth 24
Modes "800x600" "640x480"
EndSubSection
EndSection

Chapter 1. Linux Filesystem Hierarchy

17

Linux Filesystem Hierarchy

Section "ServerLayout"

Identifier "Default Layout"

Screen "Default Screen"

InputDevice "Generic Keyboard"

InputDevice "Configured Mouse"

InputDevice "Generic Mouse"
EndSection

Section "DRI"
Mode 0666
EndSection

END DEBCONF SECTION
As you can see, the layout of the file is quite simple and tends to be quite standard across most
distributions. At the top are the locations of the various font files for X (note — X will not start if you
do not specify a valid font), next is the "Modules" section. It details what modules are to be loaded
upon startup. The most well known extensions are probably GLX (required for 3D rendering of
graphics and games) and Xinerama which allows users to expand their desktop over several monitors.
Next are the various "Device" sections which describe the type of hardware you have. Improper
configuration of these subsections can lead to heartache and trauma with seemingly misplaced keys,
bewitched mice and also constant flashing as X attempts to restart in a sometimes never ending loop.
In most cases when all else fails the vesa driver seems to be able to initialise most modern video
cards. In the "Screen" section it is possible to alter the default startup resolution and depth. Quite
often it is possible to alter these attributes on the fly by using the alt—ctrl—+ or alt—ctrl— set of
keystrokes. Lastly are the "ServerLayout" and "DRI" sections. Users will almost never touch the
"DRI" section and only those who wish to utilise the Xinerama extensions of X will require having to
change any of the ServerLayout options.

/etc/X11/Xmodmap
In general your default keyboard mapping comes from your X server setup. If this setup is insufficient
and you are unwilling to go through the process of reconfiguration and/or you are not the superuser
you'll need to use the xmodmap program. This is the utility's global configuration file.

letc/X11/xkb/
The various symbols, types, geometries of keymaps that the X server supports can be found in this
directory tree.

/etc/X11/Ibxproxy/
Low Bandwidth X (LBX) proxy server configuration files. Applications that would like to take
advantage of the Low Bandwidth extension to X (LBX) must make their connections to an lbxproxy.
These applications need know nothing about LBX, they simply connect to the Ibxproxy as if it were a
regular X server. The Ibxproxy accepts client connections, multiplexes them over a single connection
to the X server, and performs various optimizations on the X protocol to make it faster over low
bandwidth and/or high latency connections. It should be noted that such compression will not increase
the pace of rendering all that much. Its primary purpose is to reduce network load and thus increase
overall network latency. A competing project called DXPC (Differential X Protocol Compression)
has been found to be more efficient at this task. Studies have shown though that in almost all cases ssh
tunneling of X will produce far better results than through any of these specialised pieces of software.

/etc/X11/proxymngr/
X proxy services manager initialisation files. proxymngr is responsible for resolving requests from
xfindproxy (in the xbase—clients package) and other similar clients, starting new proxies when
appropriate, and keeping track of all the available proxy services.

letc/X11/xdm/
X display manager configuration files. xdm manages a collection of X servers, which may be on the
local host or remote machines. It provides services similar to those provided by init, getty, and login
on character—based terminals: prompting for login name and password, authenticating the user, and

Chapter 1. Linux Filesystem Hierarchy 18

Linux Filesystem Hierarchy

running a session. xdm supports XDMCP (X Display Manager Control Protocol) and can also be used
to run a chooser process which presents the user with a menu of possible hosts that offer XDMCP
display management. If the xutils package is installed, xdm can use the sessreg utility to register login
sessions to the system utmp file; this, however, is not necessary for xdm to function.

/ete/X11/xdm/xdm—config
This is the master 'xdm' configuration file. It determines where all other 'xdm' configuration files will
be located. It is almost certain to be left undisturbed.

letc/X11/gdm/
GNOME Display Manager configuration files. gdm provides the equivalent of a "login:" prompt for
X displays— it pops up a login window and starts an X session. It provides all the functionality of
xdm, including XDMCP support for managing remote displays. The greeting window is written using
the GNOME libraries and hence looks like a GNOME application— even to the extent of supporting
themes! By default, the greeter is run as an unprivileged user for security.

/ete/X11/gdm/gdm.conf
This is the primary configuration file for GDM. Through it, users can specify whether they would like
their system to automatically login as a certain user, background startup image and also if they would
like to run their machine as somewhat of a terminal server by using the XDMCP protocol.

/etc/X11/fonts
Home of xfs fonts.

letc/X11/fs/
X font server configuration files. xfs is a daemon that listens on a network port and serves X fonts to
X servers (and thus to X clients). All X servers have the ability to serve locally installed fonts for
themselves, but xfs makes it possible to offload that job from the X server, and/or have a central
repository of fonts on a networked machine running xfs so that all the machines running X servers on
a network do not require their own set of fonts. xfs may also be invoked by users to, for instance,
make available X fonts in user accounts that are not available to the X server or to an already running
system xfs.

letc/X11/fs/config
This is the 'xfs' initialisation file. It specifies the number of clients that are allowed to connect to the
'xfs' server at any one time, the location of log files, default resolution, the location of the fonts, etc.

font server configuration file
$Xorg: config.cpp,v 1.3 2000/08/17 19:54:19 cpgbld Exp $

allow a maximum of 10 clients to connect to this font server
client-1imit = 10

when a font server reaches its limit, start up a new one

clone-self = on

log messages to /var/log/xfs.log (if syslog is not used)

error-file = /var/log/xfs.log

log errors using syslog

use-syslog = on

turn off TCP port listening (Unix domain connections are still permitted)
no—-listen = tcp

paths to search for fonts

catalogue = /usr/lib/X11/fonts/misc/, /usr/lib/X11/fonts/cyrillic/,
/usr/1lib/X11/fonts/100dpi/:unscaled, /usr/1lib/X11/fonts/75dpi/:unscaled,
/usr/1lib/X11/fonts/Typel/, /usr/1lib/X11/fonts/CID,
/usr/1lib/X11/fonts/Speedo/, /usr/1lib/X11/fonts/100dpi/,
/usr/1lib/X11/fonts/75dpi/

in decipoints

default-point-size = 120

x1,y1,x2,y2, ...

default-resolutions = 100,100,75,75

Chapter 1. Linux Filesystem Hierarchy 19

Linux Filesystem Hierarchy

font cache control, specified in kB
cache-hi-mark = 2048

cache-low-mark = 1433
cache-balance = 70
letc/X11/twm

Home of configuration files for twm. The original Tabbed Window Manager.

lete/X11/xinit/
xinit configuration files. 'xinit' is a configuration method of starting up an X session that is designed
to used as part of a script. Normally, this is used at larger sites as part of a tailored login process.

/etc/X11/xinit/xinitrc
Global xinitrc file, used by all X sessions started by xinit (startx). Its usage is of course overridden by
a .xinitrc file located in the home directory of a user.

/etc/adduser.conf
'adduser’ configuration. The adduser command can create new users, groups and add existing users to
existing groups. Adding users with adduser is much easier than adding them by hand. Adduser will
choose appropriate UID and GID values, create a home directory, copy skeletal user configuration
from /etc/skel, allow you to set an initial password and the GECOS field. Optionally a custom script
can be executed after this commands. See adduser(8) and adduser.conf(5) for full documentation.

/etc/adjtime
Has parameters to help adjust the software (kernel) time so that it matches the RTC.

/etc/aliases
This is the aliases file — it says who gets mail for whom. It was originally generated by “eximconfig',
part of the exim package distributed with Debian, but it may edited by the mail system administrator.
See exim info section for details of the things that can be configured here. An aliases database file
(aliases.db) is built from the entries in the aliases files by the newaliases utility.

/etc/alternatives
It is possible for several programs fulfilling the same or similar functions to be installed on a single
system at the same time. For example, many systems have several text editors installed at once. This
gives choice to the users of a system, allowing each to use a different editor, if desired, but makes it
difficult for a program to make a good choice of editor to invoke if the user has not specified a
particular preference.

The alternatives system aims to solve this problem. A generic name in the filesystem is shared by all
files providing interchangeable functionality. The alternatives system and the system administrator
together determine which actual file is referenced by this generic name. For example, if the text
editors ed(1) and nvi(1) are both installed on the system, the alternatives system will cause the generic
name /usr/bin/editor to refer to /usr/bin/nvi by default. The system administrator can override this and
cause it to refer to /usr/bin/ed instead, and the alternatives system will not alter this setting until
explicitly requested to do so.

The generic name is not a direct symbolic link to the selected alternative. Instead, it is a symbolic link
to a name in the alternatives directory, which in turn is a symbolic link to the actual file referenced.
This is done so that the system administrator's changes can be confined within the /etc directory.
letc/apt
This is Debian's next generation front—end for the dpkg package manager. It provides the apt—get
utility and APT dselect method that provides a simpler, safer way to install and upgrade packages.
APT features complete installation ordering, multiple source capability and several other unique
features, see the Users Guide in /usr/share/doc/apt/guide.text.gz
/etc/apt/sources.list

deb cdrom: [Debian GNU/Linux 3.0 r0O _Woody_ - Official 1386 Binary-7 (20020718)]1/
unstable contrib main non-US/contrib non-US/main

Chapter 1. Linux Filesystem Hierarchy 20

deb

deb

deb

deb

deb

deb

cdrom:

cdrom:

cdrom:

cdrom:

cdrom:

cdrom:

Linux Filesystem Hierarchy

[Debian GNU/Linux 3.0
unstable contrib main
[Debian GNU/Linux 3.0
unstable contrib main
[Debian GNU/Linux 3.0
unstable contrib main
[Debian GNU/Linux 3.0
unstable contrib main
[Debian GNU/Linux 3.0
unstable contrib main
[Debian GNU/Linux 3.0
unstable contrib main

r0 _Woody_ - Official i386
non-US/contrib non-US/main
r0 _Woody_ - Official i386
non-US/contrib non-US/main
r0 _Woody_ - Official i386
non-US/contrib non-US/main
r0 _Woody_ - Official i386
non-US/contrib non-US/main
r0 _Woody_ - Official i386
non-US/contrib non-US/main
r0 _Woody_ - Official i386
non-US/contrib non-US/main

deb http://security.debian.org/ stable/updates main
Contains a list of apt—sources from which packages may be installed via APT.
/etc/asound.conf

ALSA (Advanced Linux Sound Architecture) configuration file. It is normally created via alsactl or

Binary-6
Binary-5
Binary-4
Binary-3
Binary-2

Binary-1

(20020718) 1/
(20020718) 1/
(20020718) 1/
(20020718) 1/
(20020718) 1/

(20020718) 1/

other third—party sound configuration utilities that may be specific to a distribution such as sndconfig
from Redhat.

/etc/at.deny

Users denied access to the at daemon. The 'at' command allows user to execute programs at an
arbitrary time.

/etc/autoconf
Configuration files for autoconf. 'autoconf’ creates scripts to configure source code packages using

templates. To create configure from configure.in, run the autoconf program with no arguments.
autoconf processes configure.ac with the m4 macro processor, using the Autoconf macros. If you give

autoconf an argument, it reads that file instead of configure.ac and writes the configuration script to

the standard output instead of to configure. If you give autoconf the argument —, it reads the standard
input instead of configure.ac and writes the configuration script on the standard output.

The Autoconf macros are defined in several files. Some of the files are distributed with Autoconf;
autoconf reads them first. Then it looks for the optional file acsite.m4 in the directory that contains the
distributed Autoconf macro files, and for the optional file aclocal.m4 in the current directory. Those
files can contain your site's or the package's own Autoconf macro definitions. If a macro is defined in
more than one of the files that autoconf reads, the last definition it reads overrides the earlier ones.
/etc/bash.bashrc
System wide functions and aliases' file for interactive bash shells.
/etc/bash_completion
Programmable completion functions for bash 2.05a.
/etc/chatscripts/provider
This is the chat script used to dial out to your default service provider.
letc/cron.d, /etc/cron.daily, /etc/cron.weekly, /etc/cron.monthly
These directories contain scripts to be executed on a regular basis by the cron daemon.

/etc/crontab

'cron’ configuration file. This file is for the cron table to setup the automatic running of system
routines. A cron table can also be established for individual users. The location of these user cron
table files will be explained later on.

/etc/crontab:

system-wide crontab

Unlike any other crontab you don't have to run the "“crontab'
command to install the new version when you edit this file.
This file also has a username field, that none of the other crontabs do.

SHELL=/bin/sh

Chapter 1. Linux Filesystem Hierarchy

21

Linux Filesystem Hierarchy
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

25 6 * * * root test -e /usr/sbin/anacron || run-parts —--report /etc/cron.daily
47 6 * * 7 root test —e /usr/sbin/anacron || run-parts —--report /etc/cron.weekly
52 6 1 * * root test —e /usr/sbin/anacron || run-parts —--report /etc/cron.monthly
#

/etc/csh.login

System—wide .login file for csh(1). This file is sourced on all invocations of the shell. It contains
commands that are to be executed upon login and sometimes aliases also.
/etc/csh.logout
System—wide .logout file for csh(1). This file is sourced on all invocations of the shell. It contains
commands that are to be executed upon logout.
/etc/csh.cshre
System—wide .cshrc file for csh(1). This file is sourced on all invocations of the shell. This file should
contain commands to set the command search path, plus other important environment variables. This
file should not contain commands that produce output or assume the shell is attached to a tty.
letc/cups
Configuration files for the Common UNIX Printing System (CUPS). Files here are used to define
client—specific parameters, such as the default server or default encryption settings.
/etc/deluser.conf
'deluser’ configuration files. The deluser command can remove users and groups and remove users
from a given group. Deluser can optionally remove and backup the user's home directory and mail
spool or all files on the system owned by him. Optionally a custom script can also be executed after
each of the commands.
letc/devfs
This daemon sets up the /dev filesystem for use. It creates required symbolic links in /dev and also
creates (if so configured, as is the default) symbolic links to the "old" names for devices.
/etc/devfs/conf.d/
'devfsd' configuration files. This daemon sets up the /dev filesystem for use. It creates required
symbolic links in /dev and also creates (if so configured, as is the default) symbolic links to the "old"
names for devices.
/etc/dhclient.conf, /etc/dhclient—script
'dhclient' configuration file and 'dhclient' script files respectively. It configures your system so that it
may act as a client on a DHCP based network. It is essential to connect to the Internet nowadays.
/etc/dict.conf

/etc/dict.conf Written by Bob Hilliard <hilliard@debian.org>
1998/03/20. Last revised Sun, 22 Nov 1998 18:10:04 -0500 This is
the configuration file for /usr/bin/dict. In most cases only the
server keyword need be specified.

R

This default configuration will try to access a dictd server on
the local host, failing that, it will try the public server. In
many cases this will be slow, so you should comment out the line
for the server that you don't want to use. To use any other
server, enter its IP address in place of "dict.org".

4 o HE 3 oE

Refer to the dict manpage (man dict) for other options that could
be inserted in here.

server localhost
server dict.org

dict is a client for the Dictionary Server Protocol (DICT), a TCP transaction based query/response

Chapter 1. Linux Filesystem Hierarchy 22

Linux Filesystem Hierarchy

protocol that provides access to dictionary definitions from a set of natural language dictionary
databases.
/etc/dosemu.conf
Configuration file for the Linux DOS Emulator. DOSEMU is a PC Emulator application that allows
Linux to run a DOS operating system in a virtual x86 machine. This allows you to run many DOS
applications. It include